Goto

Collaborating Authors

 Construction Materials


MC-GRU:a Multi-Channel GRU network for generalized nonlinear structural response prediction across structures

arXiv.org Artificial Intelligence

Accurate prediction of seismic responses and quantification of structural damage are critical in civil engineering. Traditional approaches such as finite element analysis could lack computational efficiency, especially for complex structural systems under extreme hazards. Recently, artificial intelligence has provided an alternative to efficiently model highly nonlinear behaviors. However, existing models face challenges in generalizing across diverse structural systems. This paper proposes a novel multi-channel gated recurrent unit (MC-GRU) network aimed at achieving generalized nonlinear structural response prediction for varying structures. The key concept lies in the integration of a multi-channel input mechanism to GRU with an extra input of structural information to the candidate hidden state, which enables the network to learn the dynamic characteristics of diverse structures and thus empower the generalizability and adaptiveness to unseen structures. The performance of the proposed MC-GRU is validated through a series of case studies, including a single-degree-of-freedom linear system, a hysteretic Bouc-Wen system, and a nonlinear reinforced concrete column from experimental testing. Results indicate that the proposed MC-GRU overcomes the major generalizability issues of existing methods, with capability of accurately inferring seismic responses of varying structures. Additionally, it demonstrates enhanced capabilities in representing nonlinear structural dynamics compared to traditional models such as GRU and LSTM.


Physics-based machine learning for fatigue lifetime prediction under non-uniform loading scenarios

arXiv.org Artificial Intelligence

Accurate lifetime prediction of structures subjected to cyclic loading is vital, especially in scenarios involving non-uniform loading histories where load sequencing critically influences structural durability. Addressing this complexity requires advanced modeling approaches capable of capturing the intricate relationship between loading sequences and fatigue lifetime. Traditional fatigue simulations are computationally prohibitive, necessitating more efficient methods. This study highlights the potential of physics-based machine learning ($\phi$ML) to predict the fatigue lifetime of materials. Specifically, a FFNN is designed to embed physical constraints from experimental evidence directly into its architecture to enhance prediction accuracy. It is trained using numerical simulations generated by a physically based anisotropic continuum damage fatigue model. The model is calibrated and validated against experimental fatigue data of concrete cylinder specimens tested in uniaxial compression. The proposed approach demonstrates superior accuracy compared to purely data-driven neural networks, particularly in situations with limited training data, achieving realistic predictions of damage accumulation. Thus, a general algorithm is developed and successfully applied to predict fatigue lifetimes under complex loading scenarios with multiple loading ranges. Hereby, the $\phi$ML model serves as a surrogate to capture damage evolution across load transitions. The $\phi$ML based algorithm is subsequently employed to investigate the influence of multiple loading transitions on accumulated fatigue life, and its predictions align with trends observed in recent experimental studies. This work demonstrates $\phi$ML as a promising technique for efficient and reliable fatigue life prediction in engineering structures, with possible integration into digital twin models for real-time assessment.


Agentic Deep Graph Reasoning Yields Self-Organizing Knowledge Networks

arXiv.org Artificial Intelligence

We present an agentic, autonomous graph expansion framework that iteratively structures and refines knowledge in situ. Unlike conventional knowledge graph construction methods relying on static extraction or single-pass learning, our approach couples a reasoning-native large language model with a continually updated graph representation. At each step, the system actively generates new concepts and relationships, merges them into a global graph, and formulates subsequent prompts based on its evolving structure. Through this feedback-driven loop, the model organizes information into a scale-free network characterized by hub formation, stable modularity, and bridging nodes that link disparate knowledge clusters. Over hundreds of iterations, new nodes and edges continue to appear without saturating, while centrality measures and shortest path distributions evolve to yield increasingly distributed connectivity. Our analysis reveals emergent patterns, such as the rise of highly connected 'hub' concepts and the shifting influence of 'bridge' nodes, indicating that agentic, self-reinforcing graph construction can yield open-ended, coherent knowledge structures. Applied to materials design problems, we present compositional reasoning experiments by extracting node-specific and synergy-level principles to foster genuinely novel knowledge synthesis, yielding cross-domain ideas that transcend rote summarization and strengthen the framework's potential for open-ended scientific discovery. We discuss other applications in scientific discovery and outline future directions for enhancing scalability and interpretability.


Application of Artificial Intelligence (AI) in Civil Engineering

arXiv.org Artificial Intelligence

Hard computing generally deals with precise data, which provides ideal solutions to problems. However, in the civil engineering field, amongst other disciplines, that is not always the case as real-world systems are continuously changing. Here lies the need to explore soft computing methods and artificial intelligence to solve civil engineering shortcomings. The integration of advanced computational models, including Artificial Neural Networks (ANNs), Fuzzy Logic, Genetic Algorithms (GAs), and Probabilistic Reasoning, has revolutionized the domain of civil engineering. These models have significantly advanced diverse sub-fields by offering innovative solutions and improved analysis capabilities. Sub-fields such as: slope stability analysis, bearing capacity, water quality and treatment, transportation systems, air quality, structural materials, etc. ANNs predict non-linearities and provide accurate estimates. Fuzzy logic uses an efficient decision-making process to provide a more precise assessment of systems. Lastly, while GAs optimizes models (based on evolutionary processes) for better outcomes, probabilistic reasoning lowers their statistical uncertainties.


Prediction of the Most Fire-Sensitive Point in Building Structures with Differentiable Agents for Thermal Simulators

arXiv.org Artificial Intelligence

Fire safety is a critical area of research in civil and mechanical engineering, particularly in ensuring the structural stability of buildings during fire events. The Most Fire-Sensitive Point (MFSP) in a structure is the location where a fire would cause the greatest impact on structural stability. Accurate prediction of the MFSP is vital for streamlining structural assessments and optimizing the design process. This paper presents a novel framework for MFSP prediction using a neural network-based approach that integrates fire dynamics and finite element analysis through a differentiable agent model. The framework focuses on predicting the Maximum Interstory Drift Ratio (MIDR), a key indicator of structural performance under fire conditions. By leveraging the differentiable agent model, we efficiently generate labeled data for MFSP and directly train a predictor for this critical metric. To achieve this, we generated extensive simulation data encompassing structural and fire scenarios and employed graph neural networks to represent the building structures. Transfer learning was applied to optimize the training process, and an edge update mechanism was introduced to dynamically adjust edge attributes, reflecting property changes under fire conditions. The proposed model was rigorously evaluated on simulation data, demonstrating strong performance in accurately predicting both MIDR and MFSP, thus advancing fire safety analysis for building structures.


Machine Learning Models for Reinforced Concrete Pipes Condition Prediction: The State-of-the-Art Using Artificial Neural Networks and Multiple Linear Regression in a Wisconsin Case Study

arXiv.org Artificial Intelligence

The aging sewer infrastructure in the U.S., covering 2.1 million kilometers, encounters increasing structural issues, resulting in around 75,000 yearly sanitary sewer overflows that present serious economic, environmental, and public health hazards. Conventional inspection techniques and deterministic models do not account for the unpredictable nature of sewer decline, whereas probabilistic methods depend on extensive historical data, which is frequently lacking or incomplete. This research intends to enhance predictive accuracy for the condition of sewer pipelines through machine learning models artificial neural networks (ANNs) and multiple linear regression (MLR) by integrating factors such as pipe age, material, diameter, environmental influences, and PACP ratings. ANNs utilized ReLU activation functions and Adam optimization, whereas MLR applied regularization to address multicollinearity, with both models assessed through metrics like RMSE, MAE, and R2. The findings indicated that ANNs surpassed MLR, attaining an R2 of 0.9066 compared to MLRs 0.8474, successfully modeling nonlinear relationships while preserving generalization. MLR, on the other hand, offered enhanced interpretability by pinpointing significant predictors such as residual buildup. As a result, pipeline degradation is driven by pipe length, age, and pipe diameter as key predictors, while depth, soil type, and segment show minimal influence in this analysis. Future studies ought to prioritize hybrid models that merge the accuracy of ANNs with the interpretability of MLR, incorporating advanced methods such as SHAP analysis and transfer learning to improve scalability in managing infrastructure and promoting environmental sustainability.


Segmentation of cracks in 3d images of fiber reinforced concrete using deep learning

arXiv.org Artificial Intelligence

Cracks in concrete structures are very common and are an integral part of this heterogeneous material. Characteristics of cracks induced by standardized tests yield valuable information about the tested concrete formulation and its mechanical properties. Observing cracks on the surface of the concrete structure leaves a wealth of structural information unused. Computed tomography enables looking into the sample without interfering or destroying the microstructure. The reconstructed tomographic images are 3d images, consisting of voxels whose gray values represent local X-ray absorption. In order to identify voxels belonging to the crack, so to segment the crack structure in the images, appropriate algorithms need to be developed. Convolutional neural networks are known to solve this type of task very well given enough and consistent training data. We adapted a 3d version of the well-known U-Net and trained it on semi-synthetic 3d images of real concrete samples equipped with simulated crack structures. Here, we explain the general approach. Moreover, we show how to teach the network to detect also real crack systems in 3d images of varying types of real concrete, in particular of fiber reinforced concrete.


Data-driven Detection and Evaluation of Damages in Concrete Structures: Using Deep Learning and Computer Vision

arXiv.org Artificial Intelligence

Structural integrity is vital for maintaining the safety and longevity of concrete infrastructures such as bridges, tunnels, and walls. Traditional methods for detecting damages like cracks and spalls are labor-intensive, time-consuming, and prone to human error. To address these challenges, this study explores advanced data-driven techniques using deep learning for automated damage detection and analysis. Two state-of-the-art instance segmentation models, YOLO-v7 instance segmentation and Mask R-CNN, were evaluated using a dataset comprising 400 images, augmented to 10,995 images through geometric and color-based transformations to enhance robustness. The models were trained and validated using a dataset split into 90% training set, validation and test set 10%. Performance metrics such as precision, recall, mean average precision (mAP@0.5), and frames per second (FPS) were used for evaluation. YOLO-v7 achieved a superior mAP@0.5 of 96.1% and processed 40 FPS, outperforming Mask R-CNN, which achieved a mAP@0.5 of 92.1% with a slower processing speed of 18 FPS. The findings recommend YOLO-v7 instance segmentation model for real-time, high-speed structural health monitoring, while Mask R-CNN is better suited for detailed offline assessments. This study demonstrates the potential of deep learning to revolutionize infrastructure maintenance, offering a scalable and efficient solution for automated damage detection.


Unified Few-shot Crack Segmentation and its Precise 3D Automatic Measurement in Concrete Structures

arXiv.org Artificial Intelligence

Visual-Spatial Systems has become increasingly essential in concrete crack inspection. However, existing methods often lacks adaptability to diverse scenarios, exhibits limited robustness in image-based approaches, and struggles with curved or complex geometries. To address these limitations, an innovative framework for two-dimensional (2D) crack detection, three-dimensional (3D) reconstruction, and 3D automatic crack measurement was proposed by integrating computer vision technologies and multi-modal Simultaneous localization and mapping (SLAM) in this study. Firstly, building on a base DeepLabv3+ segmentation model, and incorporating specific refinements utilizing foundation model Segment Anything Model (SAM), we developed a crack segmentation method with strong generalization across unfamiliar scenarios, enabling the generation of precise 2D crack masks. To enhance the accuracy and robustness of 3D reconstruction, Light Detection and Ranging (LiDAR) point clouds were utilized together with image data and segmentation masks. By leveraging both image- and LiDAR-SLAM, we developed a multi-frame and multi-modal fusion framework that produces dense, colorized point clouds, effectively capturing crack semantics at a 3D real-world scale. Furthermore, the crack geometric attributions were measured automatically and directly within 3D dense point cloud space, surpassing the limitations of conventional 2D image-based measurements. This advancement makes the method suitable for structural components with curved and complex 3D geometries. Experimental results across various concrete structures highlight the significant improvements and unique advantages of the proposed method, demonstrating its effectiveness, accuracy, and robustness in real-world applications.


Intelligent Gradient Boosting Algorithms for Estimating Strength of Modified Subgrade Soil

arXiv.org Artificial Intelligence

The performance of pavement under loading depends on the strength of the subgrade. However, experimental estimation of properties of pavement strengths such as California bearing ratio (CBR), unconfined compressive strength (UCS) and resistance value (R) are often tedious, time-consuming and costly, thereby inspiring a growing interest in machine learning based tools which are simple, cheap and fast alternatives. Thus, the potential application of two boosting techniques; categorical boosting (CatBoost) and extreme gradient boosting (XGBoost) and support vector regression (SVR), is similarly explored in this study for estimation of properties of subgrade soil modified with hydrated lime activated rice husk ash (HARSH). Using 121 experimental data samples of varying proportions of HARSH, plastic limit, liquid limit, plasticity index, clay activity, optimum moisture content, and maximum dry density as input for CBR, UCS and R estimation, four evaluation metrics namely coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are used to evaluate the models' performance. The results indicate that XGBoost outperformed CatBoost and SVR in estimating these properties, yielding R2 of 0.9994, 0.9995 and 0.9999 in estimating the CBR, UCS and R respectively. Also, SVR outperformed CatBoost in estimating the CBR and R with R2 of 0.9997 respectively. On the other hand, CatBoost outperformed SVR in estimating the UCS with R2 of 0.9994. Feature sensitivity analysis shows that the three machine learning techniques are unanimous that increasing HARSH proportion lead to values of the estimated properties respectively. A comparison with previous results also shows superiority of XGBoost in estimating subgrade properties.